数学基础

DeeLMind小于 1 分钟

数学基础

DeeLMind 数学基础课程

微积分,概率论,统计学,线性代数 学习网站MathPHopen in new window

导数(Derivative)

  • 常见导数

dCdx=0 \frac{\mathrm{d} C }{\mathrm{d} x} = 0

dxudx=uxu1 \frac{\mathrm{d} x^{u} }{\mathrm{d} x} = ux^{u-1}

dsin(x)dx=cos(x) \frac{\mathrm{d} sin(x) }{\mathrm{d} x} = cos(x)

dcos(x)dx=sin(x) \frac{\mathrm{d} cos(x) }{\mathrm{d} x} = -sin(x)

daxdx=axln(a)(a>0)(a!=1) \frac{\mathrm{d} a^{x} }{\mathrm{d} x} = axln(a) (a>0)(a!=1)

dexdx=ex \frac{\mathrm{d} e^{x} }{\mathrm{d} x} = e^{x}

  • 梯度下降(求min max)

f(x)=(x+4)2+1 f(x) = (x+4)^2 + 1

df(x)dx=f(x)=2x+8 \frac{\mathrm{d} f(x) }{\mathrm{d} x}=f(x)^{'} = 2x + 8

x=xθdf(x)dx x = x - \theta*\frac{\mathrm{d} f(x) }{\mathrm{d} x}

x=3θ2 x = -3 - \theta * 2

x=30.12 x = -3 - 0.1 * 2

x=30.2 x = -3 - 0.2

x=3.20.1(3.22+8)=3.36 x = -3.2 - 0.1 * (-3.2 * 2 + 8) = -3.36

偏导(Partial Derivative)

f(x,y)=(x+4)2+(y+4)2+1 f(x,y) = (x+4)^2 + (y+4)^2+ 1

f(x,y)x=2x+8 \frac{\partial f(x,y)}{\partial x} = 2x + 8

f(x,y)y=2y+8 \frac{\partial f(x,y)}{\partial y} = 2y + 8

梯度(Dradient)

Dradient

线性代数

[012][113] \begin{bmatrix} 0 & -1 & 2\end{bmatrix}\begin{bmatrix} -1 \\ 1 \\3\end{bmatrix}

上次编辑于:
贡献者: DeeLMind